Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study.

نویسندگان

  • Shuming Bai
  • Kai Song
  • Qiang Shi
چکیده

Observations of oscillatory features in the 2D spectra of several photosynthetic complexes have led to diverged opinions on their origins, including electronic coherence, vibrational coherence, and vibronic coherence. In this work, effects of these different types of quantum coherence on ultrafast pump-probe polarization anisotropy are investigated and distinguished. We first simulate the isotropic pump-probe signal and anisotropy decay of the Fenna-Matthews-Olson (FMO) complex using a model with only electronic coherence at low temperature and obtain the same coherence time as in the previous experiment. Then, three model dimer systems with different prespecified quantum coherence are simulated, and the results show that their different spectral characteristics can be used to determine the type of coherence during the spectral process. Finally, we simulate model systems with different electronic-vibrational couplings and reveal the condition in which long time vibronic coherence can be observed in systems like the FMO complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals.

Recent observations of excitonic coherences within photosynthetic complexes suggest that quantum coherences could enhance biological light harvesting efficiencies. Here, we employ optical pump-probe spectroscopy with few-femtosecond pulses to observe an excitonic quantum coherence in CdSe nanocrystals, a prototypical artificial light harvesting system. This coherence, which encodes the high-spe...

متن کامل

Elucidation of the timescales and origins of quantum electronic coherence in LHCII.

Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment-protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-l...

متن کامل

Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosyn...

متن کامل

Quantum entanglement in photosynthetic light-harvesting complexes

Light-harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long timescales, despite the decohering effects of their environments. Here, we analyse entanglement in multichromophoric light-harvesting complexes, and establish methods for quantification of entanglement by de...

متن کامل

Dynamics of light harvesting in photosynthesis.

We review recent theoretical and experimental advances in the elucidation of the dynamics of light harvesting in photosynthesis, focusing on recent theoretical developments in structure-based modeling of electronic excitations in photosynthetic complexes and critically examining theoretical models for excitation energy transfer. We then briefly describe two-dimensional electronic spectroscopy a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2015